Skip to main content

Mycorrhizal interactions in the rhizosphere

  • Chapter
The Rhizosphere and Plant Growth

Part of the book series: Beltsville Symposia in Agricultural Research ((BSAR,volume 14))

Abstract

Mycorrhizal fungi form a symbiotic association with the roots of most plants, and significantly alter the morphology and physiology of the plant. Among other physiological changes, root exudation is qualitatively and quantitatively altered, and thus the microbial composition of the rhizosphere changes. The kinds of microbial interactions that occur in the ‘mycorrhizosphere’ are often reflected in plant responses as a result of the combination of mycorrhizae and their microbial associates. Mycorrhiza-microbial interactions may be direct between organisms, or indirect as mediated by the host plant. For example, plant growth and health may be influenced when mycorrhizal fungi interact with the general microflora, or with specific microbes such symbiotic and free-living nitrogen-fixing bacteria, nutrient solubilizing bacteria, fungal and bacterial biocontrol agents, and other fungi. These associations and interactions occur naturally but to varying degrees in most soils. Those with positive effects on crop plants can be managed by inoculation with microbial combinations selected for their compatibility and combined effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ames R N and Bethlenfalvay G J 1987 Localized increase in nodule activity but no competitive interaction of cowpea rhizobia due to pre-establishment of vesicular-arbuscular mycorrhiza. New Phytol. 206, 207–215.

    Article  Google Scholar 

  • Azcon R 1987 Germination and hyphal growth of Glomus mosseae in vitro: effects of rhizosphere and cell-free culture media. Soil Biol. Biochem. 19, 417–419.

    Article  Google Scholar 

  • Azcon R and Barea J M 1975 Synthesis of auxins, gibberellins and cytokinins by Azotobacter vinelandii and Azotobacter beijerinckii related to effects produced on tomato plants. Plant and Soil 43, 609–619.

    Article  CAS  Google Scholar 

  • Azcon-Aguilar C and Barea J M 1985 Effect of soil microorganisms on formation of vesicular-arbuscular mycorrhizas. Trans. Brit. Mycol. Soc. 84, 536–537.

    Article  Google Scholar 

  • Azcon-Aguilar C, Diaz-Rodriquez R M and Barea J M 1986 Effect of soil micro-organisms on spore germination and growth of the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Trans. Brit. Mycol. Soc. 86, 337–340.

    Article  Google Scholar 

  • Bagyaraj D J and Menge J A 1978 Interactions between a VA mycorrhiza and Azotobacter and their effects on rhizosphere microflora and plant growth. New Phytol. 80, 567–573.

    Article  Google Scholar 

  • Barea J M and Azcon-Aguilar C 1985 Mycorrhizas and their significance in nodulating nitrogen-fixing plants. Adv. Agron. 36, 1–54.

    Article  Google Scholar 

  • Barea J M, Azcon R and Hayman D 1975 Possible synergistic interactions between Endogone and phosphate-solubilizing bacteria in low-phosphate soil. In Endomycorrhizas. Eds. F E Sanders, B Mosse and P B Tinker, pp 409–417. Acad. Press, London.

    Google Scholar 

  • Barea J M, Navarro E and Montoya E 1976 Production of plant growth regulators by rhizosphere phosphate-solubilizing bacteria. J. Appl. Bacteriol. 40, 129–134.

    Article  PubMed  CAS  Google Scholar 

  • Barea J M, Bonis A F and Olivares J 1983 Interactions between Azospirillum and VA mycorrhiza and their effects on growth and nutrition of maize and ryegrass. Soil Biol. Biochem. 15, 705–709.

    Article  Google Scholar 

  • Baya A M, Boethling R S and Ramos-Cormenzana A 1981 Vitamin production in relation to phosphate solubilization by soil bacteria. Soil Biol. Biochem. 13, 527–531.

    Article  CAS  Google Scholar 

  • Bayne H G and Bethlenfalvay G J 1987 The Glycine-Glomus-Rhizobium symbiosis. IV Interactions between the mycorrhizal and nitrogen-fixing endophytes. Plant, Cell Environ. 10, 607–612.

    Google Scholar 

  • Bethlenfalvay G J, Brown M S and Stafford A E 1985 Glycine-Glomus-Rhizobium symbiosis. II. Antagonistic effects between mycorrhizal colonization and nodulation. Plant Physiol. 79, 1054–1058.

    Article  PubMed  CAS  Google Scholar 

  • Bowen G D and Theodorou C 1979 Interaction between bacteria and ectomycorrhizal fungi. Soil Biol. Biochem. 11, 119–126.

    Article  Google Scholar 

  • Dodd J C, Burton C C, Burns R G and Jeffries P 1987 Phosphatase activity associated with the roots and the rhizosphere of plants infected with vesicular-arbuscular mycorrhizal fungi. New Phytol. 107, 163–172.

    Article  CAS  Google Scholar 

  • Garbaye J and Bowen G D 1987 Effect of different microflora on the success of ectomycorrhizal inoculation of Pinus radiata. Can. J. For. Res. 17, 941–943.

    Article  Google Scholar 

  • Gardner I C, Clelland D M and Scott A 1984 Mycorrhizal improvement in non-leguminous nitrogen fixing associations with particular reference to Hippophae rhamnoides. Plant and Soil 78, 189–199.

    Article  Google Scholar 

  • Gemma J N and Koske R E 1988 Pre-infection interactions between roots and the mycorrhizal fungus Gigaspora gigantea: Chemotropism of germ-tubes and root growth response. Trans. Brit. Mycol. Soc. 91, 123–132.

    Article  Google Scholar 

  • Graham J H, Linderman R G and Menge J A 1982 Development of external hyphae by different isolates of mycorrhizal Glomus spp. in relation to root colonization and growth of Troyer citrange. New Phytol. 91, 183–189.

    Article  Google Scholar 

  • Grimes H D and Mount M S 1984 Influence of Pseudomonas putida on nodulation of Phaseolus vulgaris. Soil Biol. Biochem. 16, 27–30.

    Article  Google Scholar 

  • Harris D, Pacovsky R S and Paul E A 1985 Carbon economy of soybean-Rhizobium-Glomus associations. New Phytol. 101, 427–440.

    Article  CAS  Google Scholar 

  • Ianson D C and Linderman R G 1990 Variation in VA mycorrhizal strain interactions with Rhizobium on pigeon pea. In The Rhizosphere and Plant Growth. Eds. D L Keister and P B Cregan. p 371. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Jabaji-Hare S H and Kendrick W B 1987 Response of an endomycorrhizal fungus in Allium porrum L. to different concentrations of the systemic fungicides metalaxyl (Ridomil) and fosetyl-Al (Aliette). Soil Biol. Biochem. 19, 95–99.

    Article  CAS  Google Scholar 

  • Katznelson H, Rouatt J W and Peterson E A 1962 The rhizosphere effect of mycorrhizal and nonmycorrhizal roots of yellow birch seedlings. Can. J. Bot. 40, 377–382.

    Article  Google Scholar 

  • Krishna K R, Balakrishna A N and Bagyaraj D J 1982 Interactions between a vesicular-arbuscular mycorrhizal fungus and Streptomyces cinnamomeous and their effects on finger millet. New Phytol. 92, 401–405.

    Article  Google Scholar 

  • Kucey R M N and Paul E A 1982 Carbon flow, photosynthesis, and N2 fixation in mycorrhizal and nodulated faba beans (Vicia faba L.). Soil Biol. Biochem. 14, 407–412.

    Article  Google Scholar 

  • Li C Y and Castellano M A 1987 Azospirillum isolated from within sporocarps of the mycorrhizal fungi Hebeloma crustuliniforme, Laccaria laccata and Rhizopogon vinicolor. Trans. Brit. Mycol. Soc. 88, 563–566.

    Article  Google Scholar 

  • Li C Y and Hung L L 1987 Nitrogen-fixing (acetylene-reducing) bacteria associated with ectomycorrhizae of Douglas-fir. Plant and Soil 98, 425–428.

    Article  CAS  Google Scholar 

  • Linderman R G 1988 Mycorrhizal interactions with the rhizosphere microflora: The mycorrhizosphere effect. Phytopathology 78, 366–371.

    Google Scholar 

  • Linderman R G, Moore L W, Baker K F and Cooksey D A 1983 Strategies for detecting and characterizing systems for biological control of soilborne plant pathogens. Pl. Disease 67, 1058–1064.

    Article  Google Scholar 

  • Linderman R G, Paulitz T C, Mosier N J, Griffiths R P, Loper J E, Caldwell B A and Henkels M E 1990 Evaluation of the effects of biocontrol agents on mycorrhizal fungi. In The Rhizosphere and Plant Growth. Eds. D L Keister and P B Cregan. p 379. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Malajczuk N 1988 Interaction between Phytophthora cinnamomi zoospores and micro-organisms on non-mycorrhizal and ectomycorrhizal roots of Eucalyptus marginata. Trans. Brit. Mycol. Soc. 90, 375–382.

    Article  Google Scholar 

  • Mayo K, Davis R E and Motta J 1986 Stimulation of germination of spores of Glomus versiforme by spore-associated bacteria. Mycologia 78, 426–431.

    Article  Google Scholar 

  • McAfee B J and Fortin J A 1988 Comparative effects of the soil microflora on ectomycorrhizal inoculation of conifer seedlings. New Phytol. 108, 443–449.

    Article  Google Scholar 

  • Meyer J R and Linderman, R G 1986a. Response of subterranean clover to dual inoculation with vesicular-arbuscular mycorrhizal fungi and a plant growth-promoting bacterium, Pseudomonas putida. Soil Biol. Biochem. 18, 185–190.

    Article  CAS  Google Scholar 

  • Meyer J R and Linderman, R G 1986b. Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biol. Biochem. 18, 191–196.

    Article  Google Scholar 

  • Mugnier J and Mosse, B 1987. Spore germination and viability of a vasicular arbuscular mycorrhizal fungus, Glomus mosseae. Trans. Brit. Mycol. Soc. 88, 411–413.

    Article  Google Scholar 

  • Neal J L, Lu K C, Bollen W B and Trappe J M 1968. A comparison of rhizosphere microfloras associated with mycorrhizae of red alder and Douglas-fir. pp 57–71 In Biolgy of Alder. Eds. J M Trappe, J F Franklin, R F Tarrant and G M Hansen, USDA For. Serv, Pac. Northwest For. Range Exp. Sta. 292 p.

    Google Scholar 

  • Pacovsky R S 1986. Micronutrient uptake and distribution in mycorrhizal and phosphorus-fertilized soybeans. Plant and Soil 95, 379–388.

    Article  CAS  Google Scholar 

  • Paulitz T C and Linderman R G 1989. Interactions between fluorescent pseudomonads and VA mycorrhizal fungi. New Phytol. 113, 37–45.

    Article  Google Scholar 

  • Raj J, Bagyaraj, D J and Manjunath A 1981. Influence of soil inoculation with vesicular-arbuscular mycorrhiza and a phosphate-dissolving bacterium on plant growth and 32P-uptake. Soil Biol. Biochem. 13, 105–108.

    Article  CAS  Google Scholar 

  • Rambelli A 1973. The rhizosphere of mycorrhizae. In Ectomycorrhizae. Eds. G L Marks and T T Kozlowski. pp 299–343. Academic Press, New York.

    Google Scholar 

  • Rose S L and Youngberg C T 1981 Tripartite associations in snowbrush (Ceanothus velutinus): effect of vesicular-arbuscular mycorrhizae on growth, nodulation, and nitrogen fixation. Can. J. Bot. 59, 34–39.

    Article  CAS  Google Scholar 

  • Schisler D A and Linderman R G 1989 The influence of volatiles purged from soil around Douglas-fir ectomycorrhizae on soil microbial populations. Soil Biol. Biochem. 21, 389–396.

    Article  Google Scholar 

  • Secilia J and Bagyaraj D J 1987 Bacteria and actinomycetes associated with pot cultures of vesicular-arbuscular mycorrhizas. Can. J. Microbiol. 33, 1069–1073.

    Article  Google Scholar 

  • John S T V, Hays R I and Reid C P P 1983 Influence of a volatile compound on formation of vesicular-arbuscular mycorrhizas. Trans. Brit. Mycol. Soc. 81, 153–154.

    Article  Google Scholar 

  • Strzelczyk E and Pokojska-Burdziej A 1984 Production of auxins and gibberellin-like substances by mycorrhizal fungi, bacteria and actinomycetes isolated from soil and the mycorrhizosphere of pine (Pinus sylvestris L.). Plant and Soil 81, 185–194.

    Article  CAS  Google Scholar 

  • Subba Rao N S, Tilak K V B R and Singh C S 1985 Synergistic effect of vesicular-arbuscular mycorrhizas and Azospirillum brasilense on the growth of barley in pots. Soil Biol. Biochem. 17, 119–121.

    Article  Google Scholar 

  • Tien T M, Gaskins M H and Hubbell D H 1979 Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennesetum americanum L.). Appl. Environ. Microbiol. 37, 1016–1024.

    PubMed  CAS  Google Scholar 

  • Wilson G W T, Hetrick B A D and Kitt D G 1988 Suppression of mycorrhizal growth response by big bluestem by non-sterile soil. Mycologia 80, 338–343.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Linderman, R.G. (1991). Mycorrhizal interactions in the rhizosphere. In: Keister, D.L., Cregan, P.B. (eds) The Rhizosphere and Plant Growth. Beltsville Symposia in Agricultural Research, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3336-4_73

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3336-4_73

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5473-7

  • Online ISBN: 978-94-011-3336-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics